^ Seismic Response Analysis and Control of Frame Structures with Soft First Storey under Near-Fault Ground Motions | Structurae
0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Seismic Response Analysis and Control of Frame Structures with Soft First Storey under Near-Fault Ground Motions

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-13
DOI: 10.1155/2020/2642431
Abstrait:

This paper proposes two kinds of arrangements of buckling-restrained brace dampers to strengthen soft-first_storey structures locally. Two types of near-fault ground motion, with and without pulse, were selected for a study of the seismic response characteristics of soft-first_storey structures with and without buckling-restrained brace dampers, and the effects of different bracing arrangements on improving the seismic performance of soft-first_storey structures were recognized. The results show that, compared with pulse-free ground motion, near-fault pulsed ground motion results in a more severe seismic response in soft-first_storey frame structures, leading to more serious and rapid destruction of the main structure. Buckling-restrained brace dampers have an obvious energy dissipation effect, play a better role in protecting the main structure, and have good practicality. Compared with structures in which the buckling-restrained brace dampers are arranged only on the bottommost layer, the bottom-four-layer-support structure is more advantageous in terms of seismic performance.

Copyright: © Chunyang Liu et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10417187
  • Publié(e) le:
    31.03.2020
  • Modifié(e) le:
    02.06.2021