Seismic Performance Evaluation of Building-Damper System under Near-Fault Earthquake
Auteur(s): |
Xiaoli Wu
Wei Guo Ping Hu Dan Bu Xu Xie Yao Hu |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Shock and Vibration, janvier 2020, v. 2020 |
Page(s): | 1-21 |
DOI: | 10.1155/2020/2763709 |
Abstrait: |
The building-damper system designed by a seismic code is usually considered to be able to withstand the attack of strong earthquakes. However, near-fault earthquakes, especially those with the forward-directivity effect, might cause early and unexpected failure of code-designed dampers and consequent severe structural damage. In this paper, by taking into account near-fault earthquakes, seismic performance of the building-damper system and damper failure’s influence are evaluated systematically. A 9-storey steel building is designed by the Chinese seismic code as the benchmark model, and five typical dampers, including buckling-restrained brace damper (BRB), friction damper (FD), self-centering damper (SCD), viscous damper (VD), and viscoelastic damper (VED), are adopted. It was found that the building-damper systems show a large response and possible damper failure under the near-fault earthquake excitations. Then, the influence of damper failure is investigated, which reveals that damper failure would significantly affect seismic performance of the building-damper system, especially for the building-SCD system. Subsequently, by introducing the artificial near-fault earthquake excitation, the influences of different pulse parameters, such as pulse velocity amplitude, pulse period, and the number of significant pulses, are studied. It shows that the pulse velocity amplitude and pulse period obviously affect the seismic performance, while the number of significant pulses presents little influence. |
Copyright: | © 2020 Xiaoli Wu, Wei Guo, Ping Hu, Dan Bu, Xu Xie, Yao Hu |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.05 MB
- Informations
sur cette fiche - Reference-ID
10676236 - Publié(e) le:
02.06.2022 - Modifié(e) le:
02.06.2022