0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Seismic Fragility Estimation Based on Machine Learning and Particle Swarm Optimization

Auteur(s): ORCID
ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 5, v. 14
Page(s): 1263
DOI: 10.3390/buildings14051263
Abstrait:

In seismic performance assessment, the development of building fragility curves is critical for performance-based engineering. Traditional methods for time history analysis, reliant on detailed ground motion (GM) inputs, often suffer from inefficiency and a lack of automation. This study proposes an accurate fragility assessment methodology, which is assisted by machine learning (ML) and particle swarm optimization (PSO), adept at handling scenarios with both scarce and sufficient fragility data. Under scenarios of scarce data, the integrated algorithms of PSO and ML are utilized, focusing on selecting GMs that may induce maximum inter-story drifts. When the dataset is sufficient, an ML fusion model is utilized to predict engineering demand parameters (EDPs), facilitating the generation of more accurate fragility curves. The effectiveness of this method is demonstrated through a case study on a high-rise reinforced concrete (RC) building, revealing a marked improvement in the precision of GM selection and the estimated range of fragility curves over traditional approaches. The proposed methodology aids in advancing structural optimization and the development of early-warning systems for seismic events, thus holding the potential to enhance current seismic risk mitigation strategies.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10788003
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine