0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Sandy Soil Liquefaction Prediction Based on Clustering-Binary Tree Neural Network Algorithm Model

Auteur(s):
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-6
DOI: 10.1155/2021/3603853
Abstrait:

The neural network algorithm is a small sample machine learning method built on the statistical learning theory and the lowest structural risk principle. Classical neural network algorithms mainly aim at solving two-classification problems, making it infeasible for multiclassification problems encountered in engineering practice. According to the main factors affecting sand liquefaction, a sand liquefaction discriminant model based on a clustering-binary tree multiclass neural network algorithm is established using the class distance idea in cluster analysis. The model can establish the nonlinear relationship between sand liquefaction and various influencing factors by learning limited samples. The research results show that the hierarchical structure based on the clustering-binary tree neural network algorithm is reasonable, and the sand liquefaction level can be categorized accurately.

Copyright: © Yu Wang and Jiachen Wang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10646751
  • Publié(e) le:
    10.01.2022
  • Modifié(e) le:
    10.01.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine