0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Safety Risk Evaluations of Deep Foundation Construction Schemes Based on Imbalanced Data Sets

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Civil Engineering and Management, , n. 4, v. 26
Page(s): 380-395
DOI: 10.3846/jcem.2020.12321
Abstrait:

Safety risk evaluations of deep foundation construction schemes are important to ensure safety. However, the amount of knowledge on these evaluations is large, and the historical data of deep foundation engineering is imbalanced. Some adverse factors influence the quality and efficiency of evaluations using traditional manual evaluation tools. Machine learning guarantees the quality of imbalanced data classifications. In this study, three strategies are proposed to improve the classification accuracy of imbalanced data sets. First, data set information redundancy is reduced using a binary particle swarm optimization algorithm. Then, a classification algorithm is modified using an Adaboost-enhanced support vector machine classifier. Finally, a new classification evaluation standard, namely, the area under the ROC curve, is adopted to ensure the classifier to be impartial to the minority. A transverse comparison experiment using multiple classification algorithms shows that the proposed integrated classification algorithm can overcome difficulties associated with correctly classifying minority samples in imbalanced data sets. The algorithm can also improve construction safety management evaluations, relieve the pressure from the lack of experienced experts accompanying rapid infrastructure construction, and facilitate knowledge reuse in the field of architecture, engineering, and construction.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.3846/jcem.2020.12321.
  • Informations
    sur cette fiche
  • Reference-ID
    10420663
  • Publié(e) le:
    22.04.2020
  • Modifié(e) le:
    22.04.2020
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine