0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

The Role of Additives in Soil-Cement Subjected to Wetting-Drying Cycles

Auteur(s): ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Infrastructures, , n. 3, v. 6
Page(s): 48
DOI: 10.3390/infrastructures6030048
Abstrait:

This study aimed to explore the use of additives in soil–cement mixtures that have undergone a wetting-drying cycle. In total, two types of soil were used, granitic and lateritic, which are widely used in road base construction in the Katingan area, Central Kalimantan, Indonesia. The cement used was the ordinary Portland type I, while the additive utilized was for commercial purposes, and predominantly contained CaCl2. This research was conducted by testing the optimum cement content for each soil to determine the shear strength according to Indonesian standards (i.e., minimum Unconfined Compressive Strength of 2400 kPa). The optimum cement contents of granitic and lateritic soils were deduced to be 5.5% and 5% on a dry weight basis, respectively. The utilization of 0.8% additive resulted in a 0.5% reduction in the optimum cement content of granite-like soil. The results showed that the optimum additive content for granitic soil was higher than that without supplementation, while for lateritic, no changes occurred. The advantage of using supplements, however, was more pronounced in the samples when they had been subjected to wetting–drying cycles. Additionally, at the optimum additive level, the moisture content and soil-cement loss during wetting was always lower than without supplements.

Copyright: © 2021 the Authors. Licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10723079
  • Publié(e) le:
    22.04.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine