Review on the Development of Mining Method Selection to Identify New Techniques Using a Cascade-Forward Backpropagation Neural Network
Auteur(s): |
Mohamed E. I. Abdelrasoul
Guangjin Wang Jong-Gwan Kim Gaofeng Ren Mohamed Abd-El-Hakeem Mohamed Mahrous A. M. Ali Wael R. Abdellah |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2022, v. 2022 |
Page(s): | 1-16 |
DOI: | 10.1155/2022/6952492 |
Abstrait: |
The most crucial event in a mining project is the selection of an appropriate mining method (MMS). Consequently, determining the optimal choice is critical because it impacts most of the other key decisions. This study provides a concise overview of the development of multiple selection methods using a cascade-forward backpropagation neural network (CFBPNN). Numerous methods of multicriteria decision-making (MCDM) are discussed and compared herein. The comparison includes several factors, such as applicability, subjectivity, qualitative and quantitative data, sensitivity, and validity. The application of artificial intelligence is presented and discussed using CFBPNN. The Chengchao iron mine was selected for this investigation to pick the optimum mining method. The results revealed that cut and fill stoping is the most appropriate mining method, followed by sublevel and shrinkage stoping methods. The least appropriate method is open-pit mining, followed by room and pillar and longwall mining methods. |
Copyright: | © Mohamed E. I. Abdelrasoul et al. et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.63 MB
- Informations
sur cette fiche - Reference-ID
10679001 - Publié(e) le:
18.06.2022 - Modifié(e) le:
10.11.2022