A Review: How Deep Learning Technology Impacts the Evaluation of Traditional Village Landscapes
Auteur(s): |
Tao Wang
Jingjing Chen Li Liu Lingling Guo |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 14 février 2023, n. 2, v. 13 |
Page(s): | 525 |
DOI: | 10.3390/buildings13020525 |
Abstrait: |
Recently, the deep learning technology has been adopted in the study of traditional village landscape. More precisely, it’s usually used to explore the representation of cultural heritage and the diversity of heritage information. In this study, we comprehensively reviewed these deep learning-related literatures for the evaluation of traditional village landscapes. E.g., the landscape image recognition led by the pixel-level semantic segmentation algorithm and image feature extraction technology enable user-centred exploration and make cultural heritage digitally and visually accessible. By suggesting a analytic framework using the pixel-level semantic segmentation algorithm and extracting image features, we attempted to identify the physical attributes and spatial characteristics of traditional village landscapes and further simulate the value perception thinking of experts and the public. Besides, we analysed the impact factors and correlation mechanism of spatial attributes to provide a scientific basis and technical support for the protection and utilization of traditional villages. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
0.28 MB
- Informations
sur cette fiche - Reference-ID
10712196 - Publié(e) le:
21.03.2023 - Modifié(e) le:
10.05.2023