0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Research on Vibration Reduction Control Based on Reinforcement Learning

Auteur(s): ORCID
ORCID
ORCID
ORCID
ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-18
DOI: 10.1155/2021/7619214
Abstrait:

Magnetorheological (MR) dampers, as an intelligent vibration damping device, can quickly change the damping size of the material in milliseconds. The traditional semiactive control strategy cannot give full play to the ability of the MR dampers to consume energy and reduce vibration under different currents, and it is difficult to control the MR dampers accurately. In this paper, a semiactive control strategy based on reinforcement learning (RL) is proposed, which is based on “exploring” to learn the optimal value of the MR dampers at each step of the operation, the applied current value. During damping control, the learned optimal action value for each step is input into the MR dampers so that they provide the optimal damping force to the structure. Applying this strategy to a two-layer frame structure was found to provide more accurate control of the MR dampers, significantly improving the damping effect of the MR dampers.

Copyright: © Rongyao Yuan et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10613154
  • Publié(e) le:
    09.07.2021
  • Modifié(e) le:
    17.02.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine