0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Research on the Effect of Spray Ventilation Cooling Systems on Human Physiological and Psychological Indexes

Auteur(s):







Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 14
Page(s): 691
DOI: 10.3390/buildings14030691
Abstrait:

Hot working environment not only affects work efficiency, but also poses a potential threat to the physical and mental health of staff. The current common method for dealing with high temperatures is spray-only or ventilation-only. To investigate the impact of different spray and ventilation modes on indoor high-temperature environments, this study examined their effects on indoor environmental parameters, average skin temperature, and psychological indicators. By establishing an experimental platform for high-temperature thermal environments, a spray ventilation cooling system was implemented, and its cooling efficacy in the indoor thermal environment was analyzed. The environmental classification of the high-temperature working environment under experimental conditions is provided based on the experimental data. A comparison and analysis of environmental parameters and physiological and psychological indicators between moderate and high-temperature environments were conducted. The combination of spray and ventilation modes resulted in a 5.3 °C reduction in air temperature, a 24.1% increase in average relative humidity, and a 3.3 °C reduction in average Wet-bulb Globe Temperature (WBGT). The cooling effect was increased by 2.3 °C and the average relative humidity was increased by 10.8% compared to spray-only and ventilation-only modes. In spray and ventilation mode, when the spray volume is increased by 15 mL/min, the air temperature is reduced by 8.2 °C, the average relative humidity is increased by 31.9%, and the average WBGT is reduced by 5.1 °C. This study has guiding significance for finding a reasonable cooling scheme to cope with indoor high-temperature environments.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10773828
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    05.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine