0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Research on Intelligent Diagnosis of Corrosion in the Operation and Maintenance Stage of Steel Structure Engineering Based on U-Net Attention

Auteur(s):

ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 14
Page(s): 3972
DOI: 10.3390/buildings14123972
Abstrait:

Intelligent corrosion diagnosis plays a crucial role in enhancing the efficiency of operation and maintenance for steel structures. Presently, corrosion detection primarily depends on manual visual inspections and non-destructive testing methods, which are inefficient, costly, and subject to human bias. While machine vision has demonstrated significant potential in controlled laboratory settings, most studies have focused on environments with limited background interference, restricting their practical applicability. To tackle the challenges posed by complex backgrounds and multiple interference factors in field-collected images of steel components, this study introduces an intelligent corrosion grading method designed specifically for images containing background elements. By integrating an attention mechanism into the traditional U-Net network, we achieve precise segmentation of component pixels from background pixels in engineering images, attaining an accuracy of up to 94.1%. The proposed framework is validated using images collected from actual engineering sites. A sliding window sampling technique divides on-site images into several rectangular windows, which are filtered based on U-Net Attention segmentation results. Leveraging a dataset of steel plate corrosion images with known grades, we train an Inception v3 corrosion classification model. Transfer learning techniques are then applied to determine the corrosion grade of each filtered window, culminating in a weighted average to estimate the overall corrosion grade of the target component. This study provides a quantitative index for assessing large-scale steel structure corrosion, significantly impacting the improvement of construction and maintenance quality while laying a solid foundation for further research and development in related fields.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10810638
  • Publié(e) le:
    17.01.2025
  • Modifié(e) le:
    17.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine