Research on Energy Consumption Prediction Models for High-Rise Hotels in Guangzhou, Based on Different Machine Learning Algorithms
Auteur(s): |
Jin Zhang
Chuyan Yuan Junyi Yang Lihua Zhao |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 1 février 2024, n. 2, v. 14 |
Page(s): | 356 |
DOI: | 10.3390/buildings14020356 |
Abstrait: |
With the advancement of information technology, energy consumption prediction models are widely used for various types of buildings (office, residential, and commercial buildings) as guidance during the design and management stages. This article will establish an efficient building energy consumption prediction model for hotel buildings. To achieve this, we collected 78 architectural drawings of high-rise hotel buildings to establish 6 kinds of typical energy consumption models in 2 standard floor layouts and 3 public area levels. Then, on this basis, we used the total energy consumption calculated by EnergyPlus as an indicator to conduct sensitivity analysis on geometric feature parameters, internal heat source parameters, and thermal parameters, respectively. Finally, we generated a building database with 5000 samples through the R programming language to calculate and verify the energy consumption. As a result, it was proved that the energy consumption of hotel buildings can be predicted accurately, and that quadratic polynomial regression, with the best accuracy and stability, is the most suitable optimization model for hotel energy consumption prediction in Guangzhou. These conclusions provide a good theoretical basis for the analysis, prediction, and optimization of energy consumption in high-rise hotel buildings in the future. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
Lieux géographiques
2.32 MB
- Informations
sur cette fiche - Reference-ID
10760362 - Publié(e) le:
15.03.2024 - Modifié(e) le:
25.04.2024