Research on Bearing Characteristics of Open-Ended Pipe Piles under Static Load
Auteur(s): |
Haibao Feng
Xingke Dai Shuiyue Chen Jianwei Chen |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-8 |
DOI: | 10.1155/2021/5572898 |
Abstrait: |
The accurate estimate of the ultimate bearing capacity of a single pile in the vertical direction is an important issue in the design of the pile foundation. This paper presents a static test on a single-pile model. The test was performed through a large-scale model casing test equipment that is independently developed. Various factors that affect the different test soil samples have been taken into account. In addition, the test has measured the pile’s internal stress and displacement through the sensors that were installed on the pile. What is more, a series of studies on the settling character of the single pile, pile lateral friction, changing nature of tip resistance, and its development with settling have been carried out. Finally, this paper analyzes the bearing capacity behavior and load transfer mechanism in the compressive static load test on the single pile in the vertical direction. The test results show that, under the same static load, the lateral friction of a pile in the sand is bigger than that in the silty clay, and with the increasing load at the pile tip, the increment speed of tip resistance in the silty clay is much faster than that in the sand, while pile’s bearing capacity in the sand is much bigger than that in the silty clay. |
Copyright: | © 2021 Haibao Feng et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.82 MB
- Informations
sur cette fiche - Reference-ID
10602140 - Publié(e) le:
17.04.2021 - Modifié(e) le:
02.06.2021