0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Research and Application of the Local Differential Freezing Technology in Deep Alluvium

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-15
DOI: 10.1155/2020/9381468
Abstrait:

Aiming at the complicated engineering conditions of the auxiliary shaft repair in the Banji coal mine, it was proposed to seal the water around the shaft lining by differential control freezing technology using double rows of holes. The outer row of holes is completely frozen, and the inner row of holes is local differential frozen according to the degree of destruction of the shaft lining. The local differential freezing pipe was successfully developed according to engineering requirements. Numeral simulations were used to predict the development of the freezing temperature field; the results showed that the inward expansion range of the frozen wall formed by the inner row freezing holes was effectively limited and the temperature drop rate of the shaft lining was significantly reduced after the local differential freezing technique was adopted. The on-site monitoring data showed that the temperature of the limited freezing layer was about 5°C higher than that of the conventional freezing layer. During the drainage work and the construction of the new shaft lining, the thickness and average temperature of the frozen wall remained stable, indicating that the implementation of the local differential freezing technology achieved the expected results. Further analysis showed that when the temperature of the limited freezing part of freezing pipes in the inner row was controlled within the range of −15 to −10°C, not only could the frozen wall reach the design thickness and strength but the frost heaving pressure on the existing shaft lining could be effectively eliminated.

Copyright: © 2020 Bin Wang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10410021
  • Publié(e) le:
    26.01.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine