Reliability Assessment and Residual Life Estimation of Concrete Girder Bridges Strengthened by Carbon Fiber during the Service Stage
Auteur(s): |
Haoyun Yuan
Wei Hou Leping Ren Xiaojin Zhao |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2020, v. 2020 |
Page(s): | 1-11 |
DOI: | 10.1155/2020/3906730 |
Abstrait: |
In recent decades, carbon fiber reinforced plastics (CFRP) have been widely used to repair and maintain concrete structures around the world. Since the parameter uncertainties of load and resistance are very important for the reliability assessment of RC bridge strengthened by CFRP, this paper presents a method to estimate the reliability and residual life of RC bridges strengthened by CFRP. In the proposed method, uncertainties of material properties, geometry parameters, load model, and time-dependent resistance model are taken into account. The proposed method combines the inverse reliability method and the calculation method of load and resistance of RC bridge strengthened by CFRP and is illustrated by an example RC bridge strengthened by CFRP during the service stage. The results indicate that the proposed approach can provide valid information regarding parameter uncertainties for the reliability of RC bridge strengthened by CFRP during the service stage. Additionally, the effects of parameter uncertainty of the reliability and residual life of RC bridge strengthened by CFRP during the service stage are analyzed and discussed. The proposed method is more robust and reliable than the traditional method. |
Copyright: | © Haoyun Yuan et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.34 MB
- Informations
sur cette fiche - Reference-ID
10446405 - Publié(e) le:
09.10.2020 - Modifié(e) le:
02.06.2021