0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Relationship between the Shear Strength and the Depth of Cone Penetration in Fall Cone Tests

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-8
DOI: 10.1155/2020/8850430
Abstrait:

The determination of liquid limit is of great significance in the engineering classification of soil and the selection of the control standard of highway subgrade packing and compactness. Based on the research achievements of many scholars on the relationship between the shear strength and the depth of cone penetration in fall cone tests in the liquid limit tests, the process of penetration was analyzed according to the Law of Conservation of Energy, and the expression of K was derived. Then, the expression was verified by the experimental data of different scholars and the existing data of various countries and institutions. And, the results were also compared with those obtained by the previous scholars using limit equilibrium theory. The results indicate that the new expression is in good agreement with the experimental results. K can be predicted well. And so, the shear strength can be calculated based on the depth of cone penetration, and then, the experimental value of the shear strength can be compared with the calculated value through laboratory tests. The influence of cone weight and cone angle on the shear strength calculation was analyzed. In addition, the liquid limit index of different standards was discussed based on the expression of K, and suggestions on how to achieve relative combination of different codes and standards were raised, which was very helpful for international communication.

Copyright: © Xing Zeng et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10535980
  • Publié(e) le:
    01.01.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine