0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Relation Extraction of Domain Knowledge Entities for Safety Risk Management in Metro Construction Projects

Auteur(s): ORCID
ORCID




Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 10, v. 12
Page(s): 1633
DOI: 10.3390/buildings12101633
Abstrait:

Gathering experience and organizing knowledge from a large number of engineering construction projects is conducive to more effective and efficient safety risk management in construction projects. Metro construction practitioners often find it difficult to determine what professional knowledge is needed to establish better management. By constructing the knowledge structure of safety risk management, which is composed of domain knowledge entities (DKEs) and their hierarchical relations, practitioners can systematically master the knowledge of safety management, enhance safety management levels, and reduce the occurrence of accidents. Traditionally, domain knowledge structure was determined by experts, the mistakes occur due to the limitations of individual knowledge, and high time costs are unavoidable due to the massive amount of data. Therefore, in this study, we used a rule-based Chinese-language natural language processing (C-NLP) method to automatically extract the hierarchical relations between DKEs from a large dataset of unstructured text documents; we aimed to clarify the affiliation relationship and parallel relationship between DKEs. First, 68,817 sources of literature written in Chinese were collected. Next, the specific syntactic structures of relations of the DKEs were analyzed. Hierarchical extraction rules, including 16 hyponymic indicators and 8 appositive indicators, were revealed based on the linguistic characteristics. Then, the relations were extracted from test dataset. The precision and recall values were used to verify the model. Finally, the hierarchical relations of all the DKEs were extracted, and the knowledge structure was formed. The proposed method of hierarchical relation extraction contributes to the quick automatic construction of knowledge structures and minimizes expert bias. The knowledge structures can be used to guide safety training and can assist practitioners in safety risk management.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10700001
  • Publié(e) le:
    11.12.2022
  • Modifié(e) le:
    15.02.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine