Properties of Degraded Waste PET-Modified Styrene-Acrylic Emulsions for Cement Slurry Materials
Auteur(s): |
Jinxi Dou
Guijin Zhang Sufang Li Chengyu Tian Cunlu Ji Cong Zhang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, 2019, v. 2019 |
Page(s): | 1-14 |
DOI: | 10.1155/2019/4624907 |
Abstrait: |
The properties of a modified cement slurry based on degraded waste PET-modified styrene-acrylic emulsions are studied. The effects of the modified styrene-acrylic emulsion on water consumption, setting time, retarding effect, water retention, impermeability, and mechanical properties of the cement slurry are comprehensively studied. The results show that the modified styrene-acrylic emulsion has the following impacts on the cement slurry: it significantly reduces the water consumption required to reach a standard consistency, slows down the initial and final setting times, and greatly improves the water retention rate and water reduction rate. When the content of modified styrene-acrylic emulsion is 7.5%, the water reduction rate is 36% and the water retention rate is 97%. The solidified cement slurry with a modified styrene-acrylic emulsion content less than 7.5% has lower permeability and higher flexural strength than a common cement slurry. The compressive strength is reduced but can still reach required values. According to SEM observations, the modified styrene-acrylic emulsion can enhance the bonding strength between the cement particles, reduce the porosity of the structure, and improve the performance of cement-based composites. |
Copyright: | © 2019 Jinxi Dou et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
8.57 MB
- Informations
sur cette fiche - Reference-ID
10403252 - Publié(e) le:
28.12.2019 - Modifié(e) le:
02.06.2021