0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Auteur(s): ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 2, v. 13
Page(s): 290
DOI: 10.3390/buildings13020290
Abstrait:

Copper ore processing generates a large amount of copper slag, which has properties that are similar to fine aggregate. Copper slag has a promising future in the construction industry as an alternative to fine aggregate. Up to 50% of fine aggregate substitutions have been successful. The performance of copper slag concrete could be improved by microbiologically induced calcium carbonate precipitation. The impact of micro-organisms on the mechanical properties and flexural behaviour of copper slag concrete was investigated in this study. Five concrete mixtures were created by replacing varying amounts of fine aggregate with copper slag, ranging from 0% to 100%. m³0 grade concrete was used, and 1% to 2% of the bacterium Bacillus subtilis by weight of cement was added during the concrete casting procedure. Specimens of different shapes, such as cubes, cylinders, and prisms, were cast and examined at 7, 14, and 28 days. When treated with micro-organisms, the test results revealed that replacing 50% to 75% of the sand with copper slag produced concrete with superior mechanical properties and a greater density. With the optimal ratio of copper slag to micro-organisms, a suitable RCC beam was formed. Load–deflection patterns of bacterial copper slag concrete were used to investigate beam flexural behaviour, and the results were compared using ABAQUS modelling. Microbiologically induced calcium carbonate precipitation can alter regular copper slag concrete, resulting in enhanced concrete performance.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10712714
  • Publié(e) le:
    21.03.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine