• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil


Projected Climate Change Impacts on Hurricane Storm Surge Inundation in the Coastal United States


Médium: article de revue
Langue(s): en 
Publié dans: Frontiers in Built Environment, , v. 6
DOI: 10.3389/fbuil.2020.588049

The properties of hurricanes directly influence storm surges; however, the implications of projected changes to the climate are unclear. Here, we simulate the storm surges of historical storms under present day and end of century climate scenarios to assess the impact of climate change on storm surge inundation. We simulate 21 storms that impacted the Gulf of Mexico and Atlantic Coasts of the continental U.S. from 2000 to 2013. We find that the volume of inundation increases for 14 storms and the average change for all storms is +36%. The extent of inundation increases for 13 storms, and the average change for all storms is +25%. Notable increases in inundation occur near Texas, Louisiana, Mississippi, the west coast of Florida, the Carolinas, and New Jersey. Our calculations of inundation volume and extent suggest that at the end of the century, we can expect hurricanes to produce larger storm surge magnitudes in concentrated areas, as opposed to surges with lower magnitudes that are widespread. We examine changes in maximum wind speed, minimum central pressure, translation speed, and radius of the 33 ms−1 wind to assess the impacts of individual storm characteristics on storm surge. We find that there is no single storm characteristic that directly relates to storm surge inundation or its climate induced changes. Even when all the characteristics are considered together, the resulting influences are difficult to anticipate. This is likely due to the complexity of the hydrodynamics and interactions with local geography. This illustrates that even as climate change research advances and more is known about projected impacts to hurricanes, implications for storm surge will be difficult to predict without explicit numerical simulation.

Copyright: © Jeane Camelo, Talea L. Mayo, Ethan D. Gutmann

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
  • Publié(e) le:
  • Modifié(e) le: