Progressive Failure Analysis of Soil Slope with Strain Softening Behavior Based on Peridynamics
Auteur(s): |
Chen Wang
Jianhui Zhao Weifeng Zheng |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, février 2023, v. 2023 |
Page(s): | 1-13 |
DOI: | 10.1155/2023/6816673 |
Abstrait: |
In this study, the nonlocal, nonordinary state-based peridynamics (NOSBPD) is introduced as a novel regularization technique to study the strain localization and progressive failure of soil slopes due to strain softening behavior. The NOSBPD formulations are introduced first, and then the strain-softening Mohr–Coulomb model is incorporated into the nonlocal framework. The implicit formulations of the nonlinear NOSBPD model under the plane strain condition combined with the energy dissipation-based arc-length method to avoid the limitations of the force and displacement control in the nonlinear analysis are given. Numerical examples, including the plane strain biaxial experiments and slope models, validate the effectiveness of the proposed method in terms of alleviating mesh sensitivity. The results show that this nonlocal method can remove the mesh dependence, and the localized shear band is related to the nonlocal parameter δ. The proposed method involves being able to capture strength mobilization in different parts of the sliding surface during the progressive failure process of the soil slope. It can avoid the dilemma that the peak strength is too dangerous and the residual strength is too conservative due to the rigid body assumption in the limit equilibrium method. |
Copyright: | © Chen Wang et al. et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.64 MB
- Informations
sur cette fiche - Reference-ID
10710999 - Publié(e) le:
21.03.2023 - Modifié(e) le:
10.05.2023