0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Process advantages of laser hybrid welding compared to conventional arc-based welding processes for joining thick steel structures of wind tower

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: IOP Conference Series: Materials Science and Engineering, , n. 1, v. 1296
Page(s): 012028
DOI: 10.1088/1757-899x/1296/1/012028
Abstrait:

The most common welding processes when joining thick-walled steels in the industry are arc-based welding processes such as GMAW or SAW. For this purpose, the sheets are joined in multi-layer technique, which can lead to productivity losses due to high welding times. The process-specific challenges in welding thick steels using multi-layer technique relate to the high heat input from the process. Therefore, alternative welding processes are being actively sought. A suitable alternative is provided by beam-based welding processes such as the laser hybrid welding processes, which are characterized by deep penetration welds and lower heat input. With implementation of the laser hybrid welding process in the heavy industry, such as the wind tower industry, economic benefits can be reached such as the increase in productivity by reducing the layer number, and the lower consumption of filler material and energy. When comparing SAW welded 25 mm thick steels in five to six layers and single-pass laser hybrid welding, the welding time can be reduced more than 80 % and the costs of filler material, flux and energy can be saved up to 90 %. However, the industrial use of the laser hybrid welding process is still limited to applications, where the material thickness does not exceed 15 mm due to some process-specific challenges such as the sagging, sensitivity to manufacturing tolerances such as gaps and misalignment, limited filler wire mixing, and deteriorated mechanical properties resulting from high cooling rates. To overcome these challenges, a contactless electromagnetic backing based on an externally applied AC magnetic field was used. Eddy currents are induced due to the oscillating magnetic field, and an upward-oriented Lorentz force is generated to counteract the droplets formed due to gravitational forces. It allows to weld up to 30 mm thick structural steels in a single-pass with a 20-kW fiber laser system. Additionally, the gap bridgeability and the misalignment of edges were increased to 2 mm when welding 20 mm thick steels. With the aid of the AC magnetic field, a vortex was formed in the weld root, which had a positive effect on the filler wire mixing. A further significant advantage of the EM backing was the possibility to expand the process parameter window to maintain desired cooling times and mechanical properties, without suffering adverse effects concerning the root quality of the weld.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1757-899x/1296/1/012028.
  • Informations
    sur cette fiche
  • Reference-ID
    10777320
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine