Prioritizing Subway Station Entrance Attributes to Optimize Passenger Satisfaction in Cold Climate Zones: Integrating Gradient Boosting Decision Trees with Asymmetric Impact-Performance Analysis
Auteur(s): |
Xian Ji
Yu Du Qi Li |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 31 décembre 2023, n. 1, v. 14 |
Page(s): | 101 |
DOI: | 10.3390/buildings14010101 |
Abstrait: |
Subway station entrances serve as crucial links between urban environments and underground transit systems and are particularly vital in cities with cold climates. Specialized design strategies are essential to address user needs and promote safety and comfort, thereby encouraging sustainable travel in harsh winter conditions. This research utilizes data from Harbin and Shenyang, two winter cities in China, to explore the nonlinear influences of subway entrance attributes on passenger satisfaction through the combined use of gradient-boosting decision trees and asymmetric impact-performance analysis. The findings indicate that most key attributes of subway entrances impact passenger satisfaction asymmetrically, highlighting the significance of their hierarchical importance in generating satisfaction. These attributes are categorized into frustrators, dissatisfiers, hybrids, satisfiers, and delighters, based on their asymmetry levels. Considering the current performance of these attributes, the study identifies priority for improvement at Harbin and Shenyang’s subway entrances. This aids urban designers and city managers in making informed decisions for urban development and enhancing the overall commuter experience in winter cities. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
11.83 MB
- Informations
sur cette fiche - Reference-ID
10753819 - Publié(e) le:
14.01.2024 - Modifié(e) le:
07.02.2024