0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Preparation and Characterization of Plasters with Photodegradative Action

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 9, v. 8
Page(s): 122
DOI: 10.3390/buildings8090122
Abstrait:

The aim of this project is to investigate the behaviour of several special types plasters specifically designed to degrade the most common pollutants which are present in the atmosphere. In particular, specific additives have been added to these plasters, in order to obtain a broad spectrum of active and synergic response, each of which have peculiar functions: - microporous materials, such as clinoptilolite, a natural zeolite, that promotes the adsorption of air pollutants thanks to its porous nature; - nano-fillers, such as carbon nanotubes, that behave both as reinforcing agents as well as adsorbent materials; - photochemical agents, such as titanium oxide, that degrade air pollutants, previously adsorbed on carbon nanotubes and zeolites, thanks to the action of light that activates photodegradation reactions. All the samples were also characterized in terms of mechanical properties, adhesion to supports and water absorption. Furthermore, photodegradation tests were carried out by exposing plaster surfaces, wetted with a Rodamine solution, to Ultraviolet rays (UV) for different times. Plasters photodegradative capacity was evaluated and the results highlighted the fact that the designed admixtures showed an important photodegradative action, strictly dependent on the types and specific ratios of the selected additives.

Copyright: © 2018 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10324808
  • Publié(e) le:
    22.07.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine