Prefabricated Bridge Elements and Systems in Japan and Europe
Auteur(s): |
Henry G. Russell
Mary Lou Ralls Benjamin M. Tang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Transportation Research Record: Journal of the Transportation Research Board, janvier 2005, n. 1, v. 1928 |
Page(s): | 102-109 |
DOI: | 10.1177/0361198105192800111 |
Abstrait: |
In April 2004, a scanning tour of Japan, the Netherlands, Belgium, Germany, and France was made to obtain information about bridge construction methods being used to minimize traffic disruption, improve work zone safety, minimize environmental impact, improve constructibility, increase quality, and lower life-cycle costs. From information obtained from the tour, 10 technologies were identified for further consideration and possible implementation into U.S. practices. These included two technologies that allow bridges to be built off site and then moved to their final location in a short time, three superstructure systems and four deck systems that facilitate faster and safer construction, and one substructure system. The two technologies for moving bridges were self-propelled modular transporters and other moving systems, including skidding or sliding, incremental launching, floating, rotating, and lifting of bridges into place. The superstructure systems included a precast concrete deck system known as the Poutre Dalle system, the use of partial-depth concrete decks prefabricated on steel or concrete beams, and U-shaped precast concrete segments with transverse ribs. The deck systems involved full-depth prefabricated concrete decks, special cast-in-place closure joint details, hybrid steel–concrete deck systems, and a multiple-level corrosion protection system. The substructure system consisted of stay-in-place precast concrete panels that serve as both formwork and structural elements for solid and hollow bridge piers. |
Lieux géographiques
- Informations
sur cette fiche - Reference-ID
10778329 - Publié(e) le:
12.05.2024 - Modifié(e) le:
12.05.2024