0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Predictive Modeling of Fracture Behavior in Ti6Al4V Alloys Manufactured by SLM Process

Auteur(s): ORCID
ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Frattura ed Integrità Strutturale, , n. 68, v. 18
Page(s): 340-356
DOI: 10.3221/igf-esis.68.23
Abstrait:

This study focuses on ductile fracture behavior prediction for Ti6Al4V alloys fabricated via Selective Laser Melting (SLM). A modified Gurson-Tvergaard-Needleman (GTN) model characterizes void growth and shear mechanisms under uniaxial stress. The research explores the impact of Artificial Neural Network (ANN) architecture, specifically hidden layers and neurons, on predicting fracture parameters. Results reveal that increasing hidden layers substantially enhances accuracy, particularly for fracture displacement. Notably, predicting maximum force requires fewer layers than fracture displacement. Using selected layers and neurons, the system consistently achieved R2-values exceeding 0.99 for both maximum force and fracture displacement. The study identifies the initial void volume fraction (f0) parameter as having the most significant influence on both properties.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.3221/igf-esis.68.23.
  • Informations
    sur cette fiche
  • Reference-ID
    10776324
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    29.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine