• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Prediction of the Compressive Strength of Concrete Admixed with Metakaolin Using Gene Expression Programming

Auteur(s):



Médium: article de revue
Langue(s): en 
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-7
DOI: 10.1155/2020/8883412
Abstrait:

One of the problems of optimization of concrete is to formulate a mathematical equation that shows the relationship between the various constituents of concrete and its properties. In this work, modelling of the compressive strength of concrete admixed with metakaolin was carried out using the Gene Expression Programming (GEP) algorithm. The dataset from laboratory experimentation was used for the analysis. The mixture proportions were made of three different water/binder ratios (0.4, 0.5, and 0.6), and the grades of concrete produced were grade M15 and M20. The compressive strength of the concrete was determined after 28 days of curing. The parameters used in the GEP algorithm are the input variables which include cement content, water, metakaolin content, and fine and coarse aggregate, while the response was designated as the compressive strength. The model was trained and tested using the parameters. The R-square value from the GEP algorithm was compared with the use of conventional stepwise regression analysis. With a coefficient of determination (R-square value) of 0.95, the GEP algorithm has shown to be a good alternative for modelling concrete compressive strength.

Copyright: © Oluwatobi O. Akin et al. et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10474967
  • Publié(e) le:
    15.11.2020
  • Modifié(e) le:
    15.11.2020