Prediction of Skid Resistance Value of Glass Fiber-Reinforced Tiling Materials
Auteur(s): |
Sadık Alper Yildizel
Yeşim Tuskan Gökhan Kaplan |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, 2017, v. 2017 |
Page(s): | 1-8 |
DOI: | 10.1155/2017/7620187 |
Abstrait: |
This research focuses on the use of adaptive artificial neural network system for evaluating the skid resistance value (British Pendulum Number; BPN) of the glass fiber-reinforced tiling materials. During the creation of the neural model, four main factors were considered: fiber, calcium carbonate content, sand blasting, and polishing properties of the specimens. The model was trained, tested, and compared with the on-site test results. As per the comparison of the outcomes of the study, the analysis and on-site test results showed that there is a great potential for the prediction of BPN of glass fiber-reinforced tiling materials by using developed neural system. |
Copyright: | © 2017 Sadik Alper Yildizel et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.16 MB
- Informations
sur cette fiche - Reference-ID
10176823 - Publié(e) le:
07.12.2018 - Modifié(e) le:
02.06.2021