Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques
Auteur(s): |
Rami Raad Ahmed Al-Ani
Basim Hussein Khudair Al-Obaidi |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Civil Engineering Journal, janvier 2019, n. 1, v. 5 |
Page(s): | 82 |
DOI: | 10.28991/cej-2019-03091227 |
Abstrait: |
Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated. For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers proposed an alternative method for sewer sediment accumulation calculation using predictive models harnessing multiple linear regression model (MLRM) and artificial neural network (ANN). AL-Thawra trunk sewer in Baghdad city is selected as a case study area; data from a survey done on this trunk is used in the modeling process. Results showed that MLRM is acceptable, with an adjusted coefficient of determination (adj. R2) in order of 89.55%. ANN model found to be practical with R2 of 82.3% and fit the data better throughout its range. Sensitivity analysis showed that the flow is the most influential parameter on the depth of sediment deposition. |
Copyright: | © 2019 Rami Raad Ahmed Al-Ani, Basim Hussein Khudair Al-Obaidi |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.59 MB
- Informations
sur cette fiche - Reference-ID
10340833 - Publié(e) le:
14.08.2019 - Modifié(e) le:
02.06.2021