0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Prediction of landing gear loads using machine learning techniques

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 5, v. 15
Page(s): 568-582
DOI: 10.1177/1475921716651809
Abstrait:

This article investigates the feasibility of using machine learning algorithms to predict the loads experienced by a landing gear during landing. For this purpose, the results on drop test data and flight test data will be examined. This article will focus on the use of Gaussian process regression for the prediction of loads on the components of a landing gear. For the learning task, comprehensive measurement data from drop tests are available. These include measurements of strains at key locations, such as on the side-stay and torque link, as well as acceleration measurements of the drop carriage and the gear itself, measurements of shock absorber travel, tyre closure, shock absorber pressure and wheel speed. Ground-to-tyre loads are also available through measurements made with a drop test ground reaction platform. The aim is to train the Gaussian process to predict load at a particular location from other available measurements, such as accelerations, or measurements of the shock absorber. If models can be successfully trained, then future load patterns may be predicted using only these measurements. The ultimate aim is to produce an accurate model that can predict the load at a number of locations across the landing gear using measurements that are readily available or may be measured more easily than directly measuring strain on the gear itself (for example, these may be measurements already available on the aircraft, or from a small number of sensors attached to the gear). The drop test data models provide a positive feasibility test which is the basis for moving on to the critical task of prediction on flight test data. For this, a wide range of available flight test measurements are considered for potential model inputs (excluding strain measurements themselves), before attempting to refine the model or use a smaller number of measurements for the prediction.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921716651809.
  • Informations
    sur cette fiche
  • Reference-ID
    10561987
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine