0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Prediction of Critical Distance Between Two MDOF Systems Subjected to Seismic Excitation in Terms of Artificial Neural Networks

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Periodica Polytechnica Civil Engineering, , n. 3, v. 61
DOI: 10.3311/ppci.9618
Abstrait:

This study focuses on preventing collisions between structuresduring seismic excitation based on gap size. Several approximatedequations in order to estimate separation distancebetween buildings are collected and evaluated to measure gapsize in order to avoid impact between them when large lateraldisplacements occurred due to earthquake. Artificial neuralnetworks are utilized to estimate the required distance betweenstructures. The majority of building codes suggest separationdistances based on maximum lateral displacements of eachbuilding or height of buildings in order to provide safety gapsize between them. Subsequently, researchers have proposedseveral equations to predict the critical distance. In currentstudy, some MDOF models are equivalently modelled and optimumgap size between buildings is approximately estimatedand finally a new equation for separation distance is suggestedand the accuracy of formula is numerically investigated.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.3311/ppci.9618.
  • Informations
    sur cette fiche
  • Reference-ID
    10536693
  • Publié(e) le:
    01.01.2021
  • Modifié(e) le:
    15.05.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine