0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods

Auteur(s):
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2019
Page(s): 1-11
DOI: 10.1155/2019/3069046
Abstrait:

Machine learning methods have been successfully applied to many engineering disciplines. Prediction of the concrete compressive strength (fc) and slump (S) is important in terms of the desirability of concrete and its sustainability. The goals of this study were (i) to determine the most successful normalization technique for the datasets, (ii) to select the prime regression method to predict thefcandSoutputs, (iii) to obtain the best subset with the ReliefF feature selection method, and (iv) to compare the regression results for the original and selected subsets. Experimental results demonstrate that the decimal scaling and min-max normalization techniques are the most successful methods for predicting the compressive strength and slump outputs, respectively. According to the evaluation metrics, such as the correlation coefficient, root mean squared error, and mean absolute error, the fuzzy logic method makes better predictions than any other regression method. Moreover, when the input variable was reduced from seven to four by the ReliefF feature selection method, the predicted accuracy was within the acceptable error rate.

Copyright: © M. Timur Cihan et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10396048
  • Publié(e) le:
    06.12.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine