• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Prediction Model of Minimum Void Ratio for Various Sizes/Shapes of Sandy Binary Mixture

  1. Yang J. (2002), "Non-uniqueness of flow liquefaction line for loose sand" in Géotechnique, v. 52, n. 10, Thomas Telford Ltd., p. 757-760

    https://doi.org/10.1680/geot.2002.52.10.757

  2. Yang J. (2004), "State-Dependent Strength of Sands from the Perspective of Unified Modeling" in Journal of Geotechnical and Geoenvironmental Engineering, v. 130, n. 2, American Society of Civil Engineers (ASCE), p. 186-198

    https://doi.org/10.1061/(asce)1090-0241(2004)130:2(186)

  3. in Chinese Journal of Geotechnical Engineering, v. 26 (2004), p. 697
  4. Xiao Yang (2019), "Effect of Particle Shape on Stress-Dilatancy Responses of Medium-Dense Sands" in Journal of Geotechnical and Geoenvironmental Engineering, v. 145, n. 2, American Society of Civil Engineers (ASCE), p. 04018105

    https://doi.org/10.1061/(asce)gt.1943-5606.0001994

  5. Yang J. (2015), "Exploring the relationship between critical state and particle shape for granular materials" in Journal of the Mechanics and Physics of Solids, v. 84, Elsevier BV, p. 196-213

    https://doi.org/10.1016/j.jmps.2015.08.001

  6. Göktepe A. B. (2010), "Effect of particle shape on density and permeability of sands" in Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, v. 163, n. 6, Thomas Telford Ltd., p. 307-320

    https://doi.org/10.1680/geng.2010.163.6.307

  7. Cubrinovski Misko (2002), "Maximum and Minimum Void Ratio Characteristics of Sands" in Soils and Foundations, v. 42, n. 6, Elsevier BV, p. 65-78

    https://doi.org/10.3208/sandf.42.6_65

  8. Miura Kinya (1997), "Physical Characteristics Of Sands with Different Primary Properties" in Soils and Foundations, v. 37, n. 3, Elsevier BV, p. 53-64

    https://doi.org/10.3208/sandf.37.3_53

  9. Patra C. (2010), "Correlations for relative density of clean sand with median grain size and compaction energy" in International Journal of Geotechnical Engineering, v. 4, n. 2, Informa UK Limited, p. 195-203

    https://doi.org/10.3328/ijge.2010.04.02.195-203

  10. "A new classification chart for sand liquefaction", p. 315
  11. "Soil behaviour: the role of particle shape", p. 604
  12. Cho Gye-Chun (2006), "Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands" in Journal of Geotechnical and Geoenvironmental Engineering, v. 132, n. 5, American Society of Civil Engineers (ASCE), p. 591-602

    https://doi.org/10.1061/(asce)1090-0241(2006)132:5(591)

  13. Rousé P. C. (2008), "Influence of roundness on the void ratio and strength of uniform sand" in Géotechnique, v. 58, n. 3, Thomas Telford Ltd., p. 227-231

    https://doi.org/10.1680/geot.2008.58.3.227

  14. Zheng Junxing (2016), "Index Void Ratios of Sands from Their Intrinsic Properties" in Journal of Geotechnical and Geoenvironmental Engineering, v. 142, n. 12, American Society of Civil Engineers (ASCE), p. 06016019

    https://doi.org/10.1061/(asce)gt.1943-5606.0001575

  15. Sarkar Debdeep (2019), "The influence of particle characteristics on the index void ratios in granular materials" in Particuology, v. 46, Elsevier BV, p. 1-13

    https://doi.org/10.1016/j.partic.2018.09.010

  16. Sarkar Debdeep (2020), "Influence of particle shape and size on the threshold fines content and the limit index void ratios of sands containing non-plastic fines" in Soils and Foundations, Elsevier BV

    https://doi.org/10.1016/j.sandf.2020.02.006

  17. Kwan A.K.H. (2009), "Packing density measurement and modelling of fine aggregate and mortar" in Cement and Concrete Composites, v. 31, n. 6, Elsevier BV, p. 349-357

    https://doi.org/10.1016/j.cemconcomp.2009.03.006

  18. "Factors controlling maximum and minimum densities of sands", p. 98
  19. Chaney RC (1998), "Effects of Non-Plastic Fines on Minimum and Maximum Void Ratios of Sand" in Geotechnical Testing Journal, v. 21, n. 4, ASTM International, p. 336

    https://doi.org/10.1520/GTJ11373J

  20. Bahari Bahareh (2019), "Nonlinear estimation model of minimum void ratio for sand–silt mixtures" in Marine Georesources & Geotechnology, Informa UK Limited, p. 1-12

    https://doi.org/10.1080/1064119X.2019.1688898

  21. Liu Yangzepeng (2019), "Exploring the influence of sphericity on the mechanical behaviors of ballast particles subjected to direct shear" in Granular Matter, v. 21, n. 4, Springer Science and Business Media LLC

    https://doi.org/10.1007/s10035-019-0943-1

  22. Zhou Wan-Huan (2019), "Effects of particle sphericity and initial fabric on the shearing behavior of soil–rough structural interface" in Acta Geotechnica, v. 14, n. 6, Springer Science and Business Media LLC, p. 1699-1716

    https://doi.org/10.1007/s11440-019-00781-2

  23. Chang Ching S. (2015), "Modeling of minimum void ratio for sand–silt mixtures" in Engineering Geology, v. 196, Elsevier BV, p. 293-304

    https://doi.org/10.1016/j.enggeo.2015.07.015

  24. Chang Ching S. (2013), "Dominant grains network and behavior of sand-silt mixtures: stress-strain modeling" in International Journal for Numerical and Analytical Methods in Geomechanics, v. 37, n. 15, Wiley, p. 2563-2589

    https://doi.org/10.1002/nag.2152

  25. Hentschel Mark L. (2003), "Selection of Descriptors for Particle Shape Characterization" in Particle & Particle Systems Characterization, v. 20, n. 1, Wiley, p. 25-38

    https://doi.org/10.1002/ppsc.200390002

  26. Mora C.F. (2000), "Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing" in Cement and Concrete Research, v. 30, n. 3, Elsevier BV, p. 351-358

    https://doi.org/10.1016/s0008-8846(99)00259-8

  27. Wadell Hakon (1932), "Volume, Shape, and Roundness of Rock Particles" in The Journal of Geology, v. 40, n. 5, University of Chicago Press, p. 443-451

    https://doi.org/10.1086/623964

  28. Shinohara Kunio (2000), "Effect of particle shape on angle of internal friction by triaxial compression test" in Powder Technology, v. 107, n. 1-2, Elsevier BV, p. 131-136

    https://doi.org/10.1016/s0032-5910(99)00179-5

  29. Thevanayagam S. (2000), "Intergranular state variables and stress–strain behaviour of silty sands" in Géotechnique, v. 50, n. 1, Thomas Telford Ltd., p. 1-23

    https://doi.org/10.1680/geot.2000.50.1.1

  30. YANG J. (2012), "Collapse of loose sand with the addition of fines: the role of particle shape" in Géotechnique, v. 62, n. 12, Thomas Telford Ltd., p. 1111-1125

    https://doi.org/10.1680/geot.11.p.062

  31. McGEARY R. K. (1961), "Mechanical Packing of Spherical Particles" in Journal of the American Ceramic Society, v. 44, n. 10, Wiley, p. 513-522

    https://doi.org/10.1111/j.1151-2916.1961.tb13716.x

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10427175
  • Publié(e) le:
    13.07.2020
  • Modifié(e) le:
    13.07.2020