Predicting the Response of Laminated Composite Beams: A Comparison of Machine Learning Algorithms
Auteur(s): |
George C. Tsiatas
Sotiris Kotsiantis Aristotelis E. Charalampakis |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Frontiers in Built Environment, février 2022, v. 8 |
DOI: | 10.3389/fbuil.2022.855112 |
Abstrait: |
A comparative study of machine learning regression algorithms for predicting the deflection of laminated composite beams is presented herein. The problem of the scarcity of experimental data is solved by ample numerically prepared data, which are necessary for the training, validation, and testing of the algorithms. To this end, the pertinent geometric and material properties of the beam are discretized appropriately, and a refined higher-order beam theory is employed for the accurate evaluation of the deflection in each case. The results indicate that the Extra-Trees algorithm performs best, demonstrating excellent predictive capabilities. |
Copyright: | © 2022 George C. Tsiatas, Sotiris Kotsiantis, Aristotelis E. Charalampakis |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.17 MB
- Informations
sur cette fiche - Reference-ID
10662276 - Publié(e) le:
28.03.2022 - Modifié(e) le:
01.06.2022