Predicting material properties of concrete from ground-penetrating radar attributes
Auteur(s): |
Isabel M. Morris
Vivek Kumar Branko Glisic |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Structural Health Monitoring, décembre 2020, n. 5, v. 20 |
Page(s): | 147592172097699 |
DOI: | 10.1177/1475921720976999 |
Abstrait: |
We present here a laboratory-based experimental protocol that seeks to establish and characterize the relationship between ground-penetrating radar attributes and the mechanical properties (density, porosity, and compressive strength) of typical industry concrete mixes. The experimental data consist of ground-penetrating radar attributes from 900 MHz radargrams that correspond to simultaneously measured physical properties of Portland cement concrete, alkali-activated concrete, and cement mortar. Appropriate regression models are trained and tested on this data set to predict each physical property from ground-penetrating radar attributes. From a small selection of individual attributes, including total phase and intensity, trained random forest regression models predict porosity ( R² = 0.83 from the instantaneous amplitude), density ( R² = 0.67 from the intensity attribute), and compressive strength ( R² = 0.51 from instantaneous amplitude). These novel relationships between physical properties and ground-penetrating radar attributes indicate that material properties could be predicted from the attributes of ordinary ground-penetrating radar scans of concrete. |
- Informations
sur cette fiche - Reference-ID
10562548 - Publié(e) le:
11.02.2021 - Modifié(e) le:
10.12.2022