0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Predicting indoor temperature and humidity in a naturally ventilated office room using long short-term memory networks model in a tropical climate

Auteur(s): (Department of Architectural Engineering, Kyung Hee University, Yongin-si, Republic of Korea)
(Department of Built Environment Engineering, School of Future Environments, Auckland University of Technology, Auckland, New Zealand)
(Faculty of Environment, Ho Chi Minh City University of Natural Resources and Environment, Ho Chi Minh City, Viet Nam)
(SIASUN Robot & Automation., Ltd, Shenyang, People’s Republic of China)
(Department of Built Environment Engineering, School of Future Environments, Auckland University of Technology, Auckland, New Zealand)
(Department of Built Environment Engineering, School of Future Environments, Auckland University of Technology, Auckland, New Zealand)
Médium: article de revue
Langue(s): anglais
Publié dans: Architectural Engineering and Design Management
Page(s): 1-21
DOI: 10.1080/17452007.2024.2449244
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1080/17452007.2024.2449244.
  • Informations
    sur cette fiche
  • Reference-ID
    10815806
  • Publié(e) le:
    03.02.2025
  • Modifié(e) le:
    03.02.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine