• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Practical Hybrid Machine Learning Approach for Estimation of Ultimate Load of Elliptical Concrete-Filled Steel Tubular Columns under Axial Loading

Auteur(s):
Médium: article de revue
Langue(s): en 
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-19
DOI: 10.1155/2020/8832522
Abstrait:

In this study, a hybrid machine learning (ML) technique was proposed to predict the bearing capacity of elliptical CFST columns under axial load. The proposed model was Adaptive Neurofuzzy Inference System (ANFIS) combined with Real Coded Genetic Algorithm (RCGA), denoted as RCGA-ANFIS. The evaluation of the model was performed using the coefficient of determination (R2) and root mean square error (RMSE). The results showed that the RCGA-ANFIS (R2 = 0.974) was more reliable and effective than conventional gradient descent (GD) technique (R2 = 0.952). The accuracy of the present work was found superior to the results published in the literature (R2 = 0.776 or 0.768) when predicting the load capacity of elliptical CFST columns. Finally, sensitivity analysis showed that the thickness of the steel tube and the minor axis length of the elliptical cross section were the most influential parameters. For practical application, a Graphical User Interface (GUI) was developed in MATLAB for researchers and engineers and to support the teaching and interpretation of the axial behavior of CFST columns.

Copyright: © Tien-Thinh Le et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10473586
  • Publié(e) le:
    31.10.2020
  • Modifié(e) le:
    31.10.2020