0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Phenomenon and Critical Conditions of Chamber Soil Sliming during EPB Shield Tunneling in Water-Rich Weathered Diorite: Case Study of Jinan Metro, China

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-15
DOI: 10.1155/2020/6530832
Abstrait:

The sliming problem of chamber soil is caused by excessive groundwater seeping into the pressure chamber when an Earth pressure balance shield tunnels through a water-rich weathered rock stratum under semiopen under-pressure mode. As a solution to this problem, a calculation model was established based on field measurements of the discharged soil properties, the seepage water volume, and the seepage path in Jinan Metro, China. Chamber soil sliming is a phenomenon in which chamber soil is in a thin mud state, with no pressure balance in the pressure chamber of the EPB shield and an excessive water content of the chamber soil owing to the continuous seepage of groundwater into the chamber. The chamber pressure is relatively low, which is different from the phenomenon of spewing when the chamber pressure is relatively high. A large amount of water seepage from the stratum around the tunnel excavation surface and shield to the chamber is a significant factor leading to chamber soil sliming during the construction process. It was considered that when the moisture content of the chamber soil,w, is 2wL ≤ w ≤ 3wL, slight chamber soil sliming may occur, whereas whenw ≥ 3wL, serious chamber soil sliming may occur. Moreover, some measures to prevent and control the occurrence of chamber soil sliming were discussed. Controlling the advancing time and the permeability coefficient of chamber soil during construction is the most effective measure to avoid the phenomenon of soil sliming.

Copyright: © 2020 Lu Wang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10427955
  • Publié(e) le:
    30.07.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine