0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A phase-transition model of reprocessible thermadapt shape memory polymer

Auteur(s):


ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 4, v. 33
Page(s): 045007
DOI: 10.1088/1361-665x/ad2c72
Abstrait:

A new type of thermadapt shape memory polymer (SMP) has not only the processability of thermoplastic SMP, but also the excellent shape fixation of thermosetting SMP. To enhance the application of this thermadapt SMP within industrial sectors, a comprehensive constitutive model based on phase transition is being proposed as an indicative descriptor of the semi-crystalline thermadapt SMP’s salient features, predominantly related to its two-way shape memory effect (SME) and thermal reprocessability. The concept of cooling elongation is also introduced in this model for modeling the two-way SME during the crystallization process. The molecular mechanism of chain-packing has been studied and used to establish phenomenological formulas. In addition, to systematically assess the temperature-time dependence of the crystallization process, the Avrami equation is improved by incorporating the distribution of polymer chain segments. This strategy provides a detailed investigation into the evolving pattern of the crystallization process in response to various temperature and time conditions. Compared with the experimental results, it is found that our model can well capture mechanical behavior in multiple shape memory cycles, including the two-way SME and reshaping process caused by bond exchange reaction. Furthermore, the potential application of SMP in smart mandrels is explored because the cooling elongation feature is able to endow it with self-adaptive expansion ability.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1361-665x/ad2c72.
  • Informations
    sur cette fiche
  • Reference-ID
    10769202
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    29.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine