0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Pervious concrete: study of dosage and polypropylene fibers addiction

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Revista IBRACON de Estruturas e Materiais, , n. 1, v. 12
Page(s): 101-121
DOI: 10.1590/s1983-41952019000100009
Abstrait:

The use of pervious concrete to minimize the effects caused by the impermeability of the soil as a result of increasing urbanization is an alternative that still requires further studies regarding its design and implementation. From this perspective, this paper presents a study of the characteristics of pervious concrete, including its tensile strength, compressive strength, flexural strength and the permeability coefficient, through the development of various mixtures to adjust the characteristics of the local aggregates. Eight mixtures were studied based on a reference mixture, five of which were related to the pervious concrete with the addition of finer aggregates than the reference mixture without these aggregates. Subsequently, three mixtures were studied with the inclusion of polypropylene fibers in order to analyze the effects of the addition of fibers on the properties of the pervious concrete. It is concluded that the presence of fibers changed the characteristics of the concrete, increasing its strengths while achieving a good permeability in its mixtures. An improvement in the flexural strength of the pervious concrete was observed, which is the main property to be considered for its use in pavements, without harming the permeability, which raises the possibility for its application.

License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10413233
  • Publié(e) le:
    12.02.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine