0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Performance of Waterproofing Membranes to Protect Concrete Bridge Decks

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Transportation Research Record: Journal of the Transportation Research Board, , n. 9, v. 2675
Page(s): 1693-1706
DOI: 10.1177/03611981211009527
Abstrait:

The installation of waterproofing membranes on concrete bridge decks is a commonly used strategy to prevent water on the roadway surface from penetrating into the deck and to reduce the load and freeze–thaw related damage to the bridge deck. Typically, an asphalt layer is paved over the waterproofing membrane to prevent damage from heavy vehicles. The early failure of asphalt pavement overlays on concrete bridge decks with waterproofing membranes has been recognized as a significant issue by several transportation agencies. Potential reasons for the failure of the asphalt overlay were thought to be poor adhesion between the waterproofing membrane and the asphalt wearing course, and the material properties of the asphalt layer. By determining the most effective waterproofing methods and strategies, this research will serve to decrease repair and replacement costs, and increase the service life of asphalt overlays on concrete bridge decks. The main goals of this study are to provide the industry and transportation agencies with better insight into the failure mechanisms of asphalt overlays on concrete bridge decks and to establish field and laboratory experiments to evaluate the performance of these overlays. From the results of this study, a poured waterproofing membrane was recommended as an ideal membrane for use on concrete bridge decks because of its ease of installation, complete impermeability, and high bond strengths between the concrete deck, membrane layers, and asphalt overlay.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/03611981211009527.
  • Informations
    sur cette fiche
  • Reference-ID
    10777916
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine