0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Performance degradation assessment of wind turbine gearbox based on maximum mean discrepancy and multi-sensor transfer learning

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 1, v. 20
Page(s): 118-138
DOI: 10.1177/1475921720919073
Abstrait:

Gearboxes are critical transmission components in the drivetrain of wind turbine, which have a dominant failure rate and the highest downtime loss in all wind turbine subsystems. However, load variations of wind turbine gearbox are far from smooth and usually nondeterministic, which result in inconsistent data distributions. To solve the problem, a novel performance degradation assessment and prognosis method based on maximum mean discrepancy is proposed to test the difference between data distributions and extract the characteristics of multi-source working conditions data. Besides, the increase in sensors will bring more difficulties to establish prediction models in real-world scenarios due to different installation locations. In view of this, a transfer learning strategy called joint distribution adaptation is utilized to adapt data distribution between multi-sensor signals. Nevertheless, the presence of background noise of wind turbine signals restricts the applicability of these algorithms in practice. To further reduce the distribution difference, a novel criterion is proposed to evaluate and measure the data distribution difference between known and tested working conditions based on the witness function of maximum mean discrepancy. The application and superiority of proposed methodology are validated using a wind turbine gearbox life-cycle test data set. Meanwhile, model comparison and cross-verification are conducted between conventional and proposed prediction models. The results indicate that the proposed method has a better performance in performance degradation assessment for wind turbine gearbox.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921720919073.
  • Informations
    sur cette fiche
  • Reference-ID
    10562438
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine