0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Performance Comparison of 45° and 90° Herringboned Permeable Interlocking Concrete Pavement

Auteur(s): ORCID
ORCID
ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Infrastructures, , n. 5, v. 8
Page(s): 97
DOI: 10.3390/infrastructures8050097
Abstrait:

Pavement deterioration is mainly caused by high traffic loading and by increased levels of runoff water resulting from storms, floods, or other reasons. Consequently, this issue can be efficiently solved by employing permeable pavement, such as permeable interlocking concrete pavement (PICP) to control water runoff and endure increased traffic loads. This study investigates the performance of PICP, in both 45° and 90° herringboned surface patterns, in terms of the infiltration of volumes of water, runoff water volumes, and the ability of pavement to withstand static loading. All the related tests in this study were implemented using a lab apparatus that was fabricated as a simulator for rainfall. Various conditions were adopted during the performance tests, including the application of longitudinal slopes (0, 2.5, 5, and 7.5%), side slopes (0, 2.5, and 5%), and different rainfall intensities (25, 50, 75, and 100 L/min). The results indicated that at high rainfall intensities (75 and 100 L/min), PICP with the 45° herringboned surface pattern had the highest volume of infiltrated water and the lowest runoff water at all the adopted longitudinal and side slopes. In addition, PICP with the 45° herringboned surface pattern showed higher resistance to deflection under a static loading test than the 90° herringboned pattern under the same conditions. Therefore, PICP with a 45° herringboned surface pattern showed supremacy in terms of runoff reduction and load resistance in comparison to PICP with a 90° herringboned pattern. Even though there are differences between the two types of PICP, they are both strongly recommended as alternatives to regular pavement.

Copyright: © 2023 the Authors. Licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10730842
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    01.06.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine