Performance-Based Bi-Objective Retrofit Optimization of Building Portfolios Considering Uncertainties and Environmental Impacts
Auteur(s): |
Ziyi Zhou
Ghazanfar Ali Anwar You Dong |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 21 décembre 2021, n. 1, v. 12 |
Page(s): | 85 |
DOI: | 10.3390/buildings12010085 |
Abstrait: |
It is essential to assess the performance of a community under probable hazard scenarios and to provide possible performance enhancements. This requires establishing performance indicators, an assessment method, and an optimization technique to provide mitigation alternatives. In this paper, multiple performance indicators are utilized to assess the performance of a community building portfolio including loss, downtime, and environmental impact (e.g., CO2 emissions). The performance of a community is assessed by utilizing a performance-based assessment methodology. Then, the performance indicators are utilized as performance objectives to be optimized considering non-dominated sorting and crowding distance evolutionary optimization techniques. The framework utilizes retrofit alternatives for each building in a community and provides Pareto-optimal solutions for considered performance objectives given retrofit cost. This process of performance assessment and optimization is repeated by utilizing the Monte Carlo approach to consider uncertainties. Finally, the Pareto-optimal solutions are utilized to evaluate the retrofit programs for community building portfolios in terms of considered performance indicators. |
Copyright: | © 2021 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
6.63 MB
- Informations
sur cette fiche - Reference-ID
10657662 - Publié(e) le:
17.02.2022 - Modifié(e) le:
01.06.2022