0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Performance and Microstructural Analysis of Lightweight Concrete Blended with Nanosilica under Sulfate Attack

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2018
Page(s): 1-11
DOI: 10.1155/2018/2715474
Abstrait:

The influence of two lightweight aggregates (LWA) on concrete and the effects of cement substitution for nanosilica (NS) on the interfacial transition zone (ITZ) and cementitious matrix of concrete in resistance to attacks by magnesium sulfate (MgSO4) are researched in this work. The aggregates evaluated were perlite, which is a lightweight aggregate of open porous structure, and expanded clay (aliven) with closed porous structure. The variables included in the study were replacement percentage of coarse aggregates by lightweight coarse aggregates (0 and 100% by volume) and replacement percentage of cement by nanosilica (0 and 10% by weight). In the dosage of the mixtures, water/cementitious-material ratio constant of 0.35 was used. The LWA were characterized by XRD, XRF, and SEM techniques. Compressive strength, water absorption, and volume change in magnesium sulfate solution (according to ASTM C1012 for a period of 15 weeks) of lightweight concretes were evaluated. It was found that the nanosilica had effect on refinement in the pore system; however, the main incidence on the compressive strength and durability of lightweight concrete (LWC) was defined by the characteristics of lightweight aggregate used in its preparation.

Copyright: © 2018 Paola Vargas et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10176616
  • Publié(e) le:
    30.11.2018
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine