• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil


Passive direction displacement dependent damping (D3) device


Médium: article de revue
Langue(s): en 
Publié dans: Bulletin of the New Zealand Society for Earthquake Engineering, , n. 2, v. 51
Page(s): 105-112
DOI: 10.5459/bnzsee.51.2.105-112

Viscous fluid damping has been used worldwide to provide energy dissipation to structures during earthquakes. Semi-active dissipation devices have also shown significant potential to re-shape structural hysteresis behaviour and thus provide significant response and damage reduction. However, semi-active devices are far more complex and costly than passive devices, and thus potentially less robust over time. Ideally, a passive device design would provide the unique response behaviour of a semi-active device, but in a far more robust and low-cost device. This study presents the design, development and characterization of a passive Direction and Displacement Dependent viscous damping (D3) device. It can provide viscous damping in any single quadrant of the force-displacement hysteresis loop and any two in combination. Previously, this behaviour could only be obtained with a semi-active device. The D3 device is developed from a typical viscous damper, which is tested to evaluate the baseline of orifice sizing, force levels and velocity dependence. This prototype viscous damper is then modified in clear steps to produce a device with the desired single quadrant hysteresis loop. The overall results provide the design approach, device characterization and validation for this novel device design.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.5459/bnzsee.51.2.105-112.
  • Informations
    sur cette fiche
  • Reference-ID
  • Publié(e) le:
  • Modifié(e) le: