0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Parameter characterization of variable bending stiffness module with electrostatic layer jamming based on giant electrorheological fluid

Auteur(s): ORCID
ORCID

ORCID


ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 6, v. 33
Page(s): 065032
DOI: 10.1088/1361-665x/ad49ee
Abstrait:

Soft grippers exhibit good adaptability, but their grasping performance is limited. Variable-stiffness technology has been applied to soft grippers to address this problem. Therefore, a variable bending stiffness module (VBSM) with electrostatic layer jamming based on a giant electrorheological fluid (ELJ-GERF) for soft robots is proposed in this study, which exhibits a faster response time and a wider range of stiffness variation. A VBSM prototype is fabricated, and a theoretical model is established. The stiffness is mainly affected by the electrode quantity, overlapping area of electrode plates, insulator and conductive layers’ thickness, medium thickness and the exciting voltage. Direct current (DC) voltage experiments and alternating current (AC) voltage experiments were conducted on the test samples of filled with air (ELJ-AIR), silicone oil (ELJ-OIL), and ELJ-GERF. The experimental result show that stiffness-regulation of the VBSM can be achieved by adjusting the exciting voltage, and AC voltage being more suitable for regulating the stiffness of the VBSM than DC voltage. For AC voltage, the stiffness of ELJ-GERF increases to 53.5 times when a 4 kV voltage is applied. The stiffness variation range is about 2 to 3 times greater than that of ELJ-AIR or ELJ-OIL. Through the stiffness characterization experiment, the stiffness of the VBSM in this study is influenced by the viscosity of the GERF and the gap between the electrode plates. Through the capacitance test, the VBSM exhibits self-sensing ability. Finally, the VBSM is applied to a soft gripper, the vibration performance and variable stiffness performance in its application are verified.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1361-665x/ad49ee.
  • Informations
    sur cette fiche
  • Reference-ID
    10783961
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine