Optimization Strategy for Building Electrical Devices Considering Multi-Comfort and Economic Virtual Game Players
Auteur(s): |
Xiyong Bao
Zhen Feng Qiao Yan Ruiqi Wang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 20 février 2025, n. 5, v. 15 |
Page(s): | 776 |
DOI: | 10.3390/buildings15050776 |
Abstrait: |
Excessively pursuing the comfort of the indoor environment in buildings may increase the energy consumption of operating equipment. A non-cooperative game strategy to solve the above-mentioned problem is proposed in this paper, in which multi-comfort and economic objectives are treated as equal virtual gamers. Firstly, several kinds of electrical equipment in buildings are modeled. Secondly, a visual comfort index is established by measuring the approach, followed by the construction of multi-dimensional comfort expression, including thermal, water, and air quality in indoor environments. Then, based on game theory, the non-cooperative game model of a single entity is built by using economic and multi-comfort objectives as virtual players to avoid subjectivity in multi-objective optimization. To ensure the existence of a Nash equilibrium, the Nikaido–Isoda function is employed to reformulate the payoff function, with strategy spaces allocated based on power differences. Finally, the optimization strategy is solved by using a particle swarm optimization algorithm. The simulation results show that the proposed solution increased comfort by 31.45% and reduced economic costs by 3.89% in comparison to the multi-objective optimization algorithm. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
14.44 MB
- Informations
sur cette fiche - Reference-ID
10820569 - Publié(e) le:
11.03.2025 - Modifié(e) le:
11.03.2025