Optimization of Preparation Method, Nucleating Agent, and Stabilizers for Synthesizing Calcium Chloride Hexahydrate (CaCl2.6H2O) Phase Change Material
Auteur(s): |
Jay Thakkar
Nicholas Bowen Allen C. Chang Peter Horwath Margaret J. Sobkowicz Jan Kośny |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 20 septembre 2022, n. 10, v. 12 |
Page(s): | 1762 |
DOI: | 10.3390/buildings12101762 |
Abstrait: |
This study investigates improvements in low-cost latent heat storage material calcium chloride hexahydrate (CaCl2.6H2O). Its melting point is between 25 and 28 °C, with relatively high enthalpy (170–190 J/g); however, this phase change material (PCM) shows supercooling and phase separation. In CaCl2.6H2O incongruent melting causes lower hydrates of CaCl2 to form, which affects the overall energy storage capacity and long-term durability. In this work, PCM performance enhancement was achieved by adding SrCl2.6H2O as a nucleating agent and NaCl/KCl as a stabilizer to prevent supercooling and phase separation, respectively. We investigated the PCM preparation method and optimized the proportions of SrCl2.6H2O and NaCl/KCl. Thermal testing for 25 cycles combined with DSC and T-history testing was performed to observe changes in enthalpy, phase transitions and supercooling over the extended period of usage. X-ray diffraction was used to verify crystalline structure in the compounds. It was found that the addition of 2 wt.% of SrCl2.6H2O reduced supercooling from 12 °C to 0 °C compared to unmodified CaCl2.6H2O. The addition of 5 wt.% NaCl or KCl proved to effectively suppress separation and the melting enthalpy achieved was 169 J/g–178 J/g with congruent melting over 25 cycles, with no supercooling and almost no reduction in the latent heat. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
5.15 MB
- Informations
sur cette fiche - Reference-ID
10700369 - Publié(e) le:
11.12.2022 - Modifié(e) le:
15.02.2023