0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Optimization and Characterization of Cementitious Composites Combining Maximum Amounts of Waste Glass Powder and Treated Glass Aggregates

Auteur(s): ORCID





Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Concrete Structures and Materials, , n. 1, v. 18
DOI: 10.1186/s40069-024-00669-w
Abstrait:

This work investigates the combined use of waste glass aggregates (GA) and glass powder (GP) in cementitious mortars. For this reason, the optimized incorporation of GA by natural aggregates (NA) replacements was first studied after applying a surface roughening method with hydrofluoric acid. The compressive strength results were utilized to select the best mixture with GA. Then, different GP contents were added by cements substitutions to the optimized GA-based mortar. A control mortar without GA and GP amounts was also casted as a reference for comparison. The detailed mechanical, physical and durability properties of the resulted mixtures with combined GA and GP were assessed by considering the compressive and flexural strengths, ultra-sonic pulse velocity, alkali-silica reaction (ASR), rapid chloride permeability test (RCPT), magnesium sulphate attack and sulfuric acid resistance. The microstructure of different optimized (GA + GP)-combinations was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)in order to analyse the interfacial transition zone (ITZ) between glass materials and the surrounding matrix. The results showed that the optimized composition with 75% GA and 25% GP was shown with high compacity and durability characteristics due to the increased GA/matrix ITZ and the formation of C–(N,K)–S–H products with C–S–H.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1186/s40069-024-00669-w.
  • Informations
    sur cette fiche
  • Reference-ID
    10789810
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine